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Background and Motivation



Biological Networks

Network-based structures appear everywhere in nature throughout
various biological systems:

T Gorer
7k 1N ] e
< /c,,,u.,. h j) U ¢ o
> ) e - Protein —
AR \/: e / e T Genes o @
o z
(a) Ecological (b) Neural (c) Gene Co-Regulation

Figure 1: Example biological networks.

(a) https://link.springer.com /protocol /10.1007 /978- 1- 4939-8882-2_1;//
(b) https://medium.com/predict/artificial- neural- networks- mapping- the- human- brain-2e0bd4a93160; / /

(c) https://ontrack-media.net/gateway /science7 /g_s7m1I2s3.html


https://link.springer.com/protocol/10.1007/978-1-4939-8882-2_1;//
https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160;//
https://ontrack-media.net/gateway/science7/g_s7m1l2s3.html

Biological Networks M

Modeling biological networks provides a mathematical representation of
the unit-to-unit connections in these systems?

These network connections may differ by important factors

In particular, gene co-regulated networks may differ by individual DNA

profiles®™* or characteristics such as sex>



Boston Lung Cancer Survival Cohort Example M

Figure 2 shows that the network structure of lung cancer-related genes
depends on the heterozygous or homozygous status of SNP chr1:1792215.
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Figure 2: Networks with eight lung cancer genes differing by SNP chr1:1792215
genotype among Boston Lung Cancer Survival Cohort (BLCSC) study patients.



Graphical Models M

Graphical models provide a means of quantifying the relationship
between nodes of a network through conditional co-dependence (edges)

= Let X = (Xi,...,X,) be a p-dimensional random vector

= The tuple Gx = {G, P(X)} defines a graphical model for X where G
is a graph and P(X) is a given probability

An edge between two nodes is defined by a non-zero partial correlation



Conditional Gaussian Graphical Models

The Gaussian distribution is a natural choice for jointly modeling
conditional independences, encoded by G, for continuous outcomes

Conditional Gaussian graphical models (CGGMs) reparametrize the
multivariate linear regression model to explicitly exhibit:'°

= Partial correlations between predictors and responses

= Partial correlations among responses



Current CGGM Formulations M

For observed {(xj, y;)}7_; where x; is a p-vector of predictors and y; is a
g-vector of responses, CGGMs currently take the form:

yi=Ax;+e, e~NOW), Vi=1...,n

where A is a p X g matrix of regression coefficients, W is a g X g covariance
matrix of Gaussian noise, and N(-) denotes the Normal distribution



Existing CGGM Literature

Existing CGGMs typically only allow the mean structure, not the network

structures, to vary with predictors 13

= Precision matrix, W1, specifies a ‘covariate-adjusted’ Gaussian graph

= The conditional dependence structure is estimated after taking into
account confounding effects on the mean structure

= Regression coefficients A relate to associations in the mean (e.g. gene

expression level) structure



A Baysian Gaussian Graphical Model M

A related work in the context of Bayesian directed acyclic graphs allows
network structures, not means, to vary with predi<:tors14

= Models the conditional independence function as the product of a
smooth function and a thresholding function

= Accounts for functional nonlinearity in edge-covariate relationships

= Allows the structure of the graph to vary with multiple covariates
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Our Proposal

We propose a new class of conditional (undirected) graphical models,
where both the mean and network structures depend on covariates

= Jointly model the mean and covariance functions given covariates
= Parsimonious representation of these sources of variation

= Accomodates low- and high-dimensional settings
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Model



Notation and Assumptions M

Let x = (xq,... ,XP)T be an observed p-vector of covariates and
y=0n1,--- ,yq)T be an observed g-vector of outcomes. We assume:
ylx ~ Ny (1(x), @7 (x)) (1)

where pi(x) is a g-dimensional mean vector and ©(x) is a g X ¢
positive-definite precision matrix, both of which depend on x, and Ng(+)
denotes the g-dimensional multivariate Normal distribution
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Parameterizing the Mean and Covariance

We seek to achieve a parsimonious, interpretable representation of the
mean and covariance structures:

= We parameterize the mean vector by p(x) = Ax, where Aisa g x p
regression coefficient matrix

= We further parameterize @ '(x) as @ *(x) = W + Bxx’B’ where W
is a g X g positive-definite matrix and B is a g X p matrix

= Since W is positive-definite and Bxx’B’ is a rank-1 matrix that
depends on x, then @ *(x) is also positive-definite
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Dimensionality and Sparsity M

Given the context of the scientific question, the dimensionality of the
data may vary greatly:

= This approach accomodates both the low- (p, g << n) and
high-dimensional (p, g >> n) settings

= When p,q >> n, we impose sparsity conditions on the selection
and estimation of A, B, and W through regularization

= In the special case when p,q << n and A, B, and W are dense, the
problem reduces to Hoff and Niu's covariance regression®
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Random Effects Model Representation M

We can conveniently express this formulation as a random effects model:
y=Ax+v-Bx+e (2)

where v ~ N(0,1), e ~ Ny (0,W), and v L e. Thus:

= Ely] = Ax = p(x)
* E[(y —p(x))(y - p(x))] = Bx'B' + W =07 (x)

Note: We have p(x) and © *(x) where x is a common set of predictors.
We can consider p(x) and ©@!(x*) where x* C x or x* ¢ x.
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Log-Likelihood Function M

Given n i.i.d. samples, {(x;,y;)}";, and with the 7; are known, we
consider the complete data log-likelihood function:

(A, W, B, ) = log [H(zﬂ)g \w\’% exp {—% [y,- - (A i B) "i} ! vl [yl_ — (A by B) X/.] }‘|

i=1

n

1 -1 fy—1
< = log |W| = [Yi* (A+’Yf'5) Xi] v [.Vi* (A+’7i'B) Xi]
2

i=1

In reality, the ~; are unknown random effects, thus there is added
computational difficulty, as we cannot observe B and W, only @ *
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Algorithm



Our Problem M

Maximize: ¢ (A, W, B) subject to: [[[A|B]|l1 < A1 and [|[W[; < A

= \; and )\, are tuning parameters and || - ||1 is the ¢; norm

= Constraints control sparsity in the mean/covariance coefficients and
our ‘baseline’ heterogeneity, respectively

= Exploiting the random-effects representation in (2), we establish a
penalized expectation-maximization (EM) algorithm
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Estimation via Penalized EM-Algorithm

As ~; are unobserved, we replace them in the likelihood with their:

= Conditional Expectation: E[v;|y;, x;, ¥, B]
= Conditional Variance: Var[yi|y;, x;, W, B]

We formulate two ¢;-constrained optimization problems to iteratively
obtain estimates for our parameters {A, B} and W

= These problems can be expressed in their primal-dual form

= And solved with straight-forward linear programming approaches
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Penalized EM-Algorithm: E-Step M

In the low-dimensional setting, ~i|y;, x;, W, B ~ N(m;, v;) where:
v; = Var[yily, x, W, B] = (1 + x,B'W*Bx;)!
m; = E[yily, x, W, B] = v;(y; — Ax;)’W ' Bx;

In the high-dimensional setting, these integrals are intractable.
Conditional means/variances are approximated with Laplace’s method
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E-Step: Complete Data Log Likelihood

We utilize the expressions derived for the conditional means and variances
of 7; in the expected complete-data log likelihood as follows:

Q(A, W, B|A, ¥, B) = —2 - E[¢(A, ¥, B)|A, ¥, B]

~ / s - ’ A
o nlog |W| + Zl" LE [(y, — Axj— i Bx,) w1l (y,- — Axj — i - Bx,v) 1A, B]
n » f 1 - |
= nlog |W] + E L i = Ak B ) T (= Axp = miBx; ) s B' 0T Bs;
where s; = /v;
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E-Step: Alternative Notation M

We then construct the following augmented matrices:

’
/ / / /
X*—[XI X0 OP]
/ / / /
mi X s MpX 51X e S5pX
171 Ly L ety 2nx2p
’
!
Y* _ Yn><q C* _ Ap><q
; 0;7>< - BPXq
q 2nxq pX2q

and write the expected value of the complete data log-likelihood as:

Q(Aawa B‘Avﬁ,7 B) =2 E[/(Aawa B)"Aqv{l}a é]
o nlog W[+ [Y* — X*(C*)Y] w1 [Y* — X*(C*)]
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Penalized EM-Algorithm: M-Step M

In the low-dimensional setting, we have convenient, closed-form updates
for both C* and W:15

. Cr — (Y*)/X* [(X*)/X*]*l
s W=1{yr X" (C)T Y - X*(C)]

In the high-dimensional setting, we iteratively update C* and W using

linear programming approaches for constrained £, minimization3:16:17
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M-Step: Notation M

Let:

s yr=(20) Ty
n x*=(2n) 7T X

and define:
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M-Step: Updating C* M

We estimate C* by solving the constrained optimization problem:

C*c arg min {|C*|1 D |Sxryr — € Synyen
C*E€RPX2

<)

where )1 is the tuning parameter

= Exploiting the separability of the penalty function, this this is
equivalently carried out as p separate optimization problems

= Expressing this minimization problem in its primal-dual form, we

utilize a multivariate variation on the Dantzig selector 31
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M-Step: Updating W M

Given C*, we estimate W by solving the constrained optimization problem:

W e argmin {|W|1 : [lgxg — Syoy- V] < Ao}

WeRaxa

where A, is the tuning parameter:

= We again exploit the separability of the penalty function and solve g
separate optimization problems

= Expressing this minimization problem in its primal-dual form, we
utilize a variation on the CLIME algorithm'’

25



Symmetry Conditions on W

We impose a symmetry condition on W as in Cai et al. (2013):13

= (%)

@Uzlf}jf:iﬁ}j'}l(‘% < 12},->+1/3j1,-']1(@33- > |4k

)

where I(-) is the indicator function
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Tuning A\; and )\,

= We run the EM-Algorithm over a grid of candidate A\; and A, values
= Tuning of A\; and A, is carried out via k-fold cross-validation

= Optimal A\; and A, are evaluated jointly using the Bayesian
Information Criterion

27



Conclusions



Future Work M

= Work through several computational considerations, including
parallelization and converting R code to C++

= Run simulations comparing the selection and estimation accuracy and
performance time of our method to existing methods

= Develop an R package and submit to the Comprehensive R Archive
Network (CRAN)

= Analyze data from the Boston Lung Cancer Study Cohort

28



(brief) Simulated Case M

We simulate A and B to form complex, though not biologically plausible
coefficient matrices for the mean and covariance functions:

= p=70, g=100, n=50
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(brief) Simulated Case

Example results are given in Figure (3) below:

True ¥ True A True B

Estimated ¥ Estimated A Estimated B

Figure 3: Recovery of complex mean and covariance coefficient structures
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Conclusions

We have proposed a novel method for the selection and estimation of
conditional Gaussian graphical models:

= We jointly model the mean and covariance structure of our Gaussian
graph conditional on low- or high-dimensional covariates

= We offer a parsimonious random-effects model representation with
computationally efficient and straightforward estimation techniques

= Parameters of A, B, and W have a direct interpretation in terms of
how heteroscedasticity co-occurs in y

31
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