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Motivation: Lung Cancer Prognosis
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- Lung cancer remains one of the leading causes of cancer-related
deaths to date, with a 5-year survival rate of approximately 1 in 5

- Prognosis varies greatly and depends on several individualized risk
factors including smoking status, genetic variants, and other
comorbid conditions

- Patients diagnosed with lung cancer may experience a disease
progression, go into remission, or have a recurrence prior to death



Semi-Competi
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- Mortality is often studied without consideration of competing
events, or composite endpoints such as progression-free survival are
constructed, which measure the time to the first of multiple events

- When progression and death do not correlate well, particularly for
cancers with long post-progression survival, the effects of certain risk
factors may differ across ‘states’ of a patient's disease trajectory

- Many survival processes involve a non-terminal (e.g., disease
progression) and a terminal (e.g., death) event, which form a
semi-competing relationship [2]



Disease Prognostication M

- Disease prognostication is a complex task, as it often relies on the
unique risk factors and health events spanning a patient’s entire
clinical course to predict outcomes with any accuracy

- Deep learning has emerged as a powerful tool for survival prediction;
however, limited work has been done to predict multi-state or
competing risk outcomes, let alone semi-competing

- We propose a new deep learning framework for semi-competing
outcomes based on a compartment-type model [3, 6, 5]



Semi-Competing Data and Notation M

Let T;; denote the time to the non-terminal event, T;> the time to the ter-
minal event, and C; the censoring time for the ith individual. We observe:

D = {(Yi, di1, Yi2, 0i2, xi); i=1,...,n}

with Yio = TpAG, 612 = I(Ti2 < ), Yin = TuAVYia, 01 = I(Tin < Vi),
x; is a p-vector of covariates, and /(-) denotes the indicator function

- Define T;;1 = oo if the terminal event occurs before the non-terminal

- Let f(t1,1);0 < t; < t, denote the joint PDF of ( Ty, T,), which
assigns probability mass to the ‘upper wedge' on which T3 < T,

- We attribute the balance of probability to the line t; = oo with
density fo(t2); t >0 [7, 4]



Joint Distribution of (T3, T5)
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Figure 1: Graphical representation of the joint distribution of (71, T») based
on the illness—death model
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The lliness-Death Model M

We formulate our approach based on the illness-death model, a compartment-
type model for the rates at which individuals transition between states:

Figure 2: lliness-Death Model Framework
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A3(t2 | t1)
Aa(t2)
A1 (t1 | visxi) = vidor (t1) exp {hi(xi)}; t1 >0 (1)
A2 (B2 | i, xi) = vidoz2 (t2) exp {h2(xi)}; 2 >0 (2)

A3 (t2 ‘ tl,’y;,X,') = 7;)\03 (t2 ‘ tl)exp{h3(x,~)}; O<ti <t (3)



Me

BIOSTATISTICS

Integrating out the frailty term, ~;, in the conditional likelihood based on (1) - (3), we
derive the following objective function:

N
L(0, hg(-) | D) = din{loglo1 (yir) + h(xi)}

=
+ 82 (1 = di1) {log Moz (yiz) + h2(xi)} 4)
+ 81812 {log Xos (viz — yi1) + h3(x;) + log(1 + 0)} — (071 + i1 + 612)

x log[1 4 6{Ao1(yi1)e™ ™) + Aga(yin)e™™) + Aoz (yin — yin)eM)Y]

We opt for a flexible, non-parametric definition of hg(x;); & = 1,2,3 as outputs from
three fully-connected, feed-forward sub-architectures

- We implement our approach using the TensorFlow deep learning library in R,
with model building done using the Keras API

- Finite parameter training is done via the GradientTape API for automatic
differentiation in a custom forward pass operation



Architecture
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Figure 3: Deep Neural Network for Semi-Competing Risks Architecture
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Implementa Usage
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- Taking advantage of Keras' progressive disclosures of complexity,
we implement a custom model in a standard, user-friendly manner

- The user instantiates the DNN-SCR model with the custom model
wrapper function, then proceed with the typical workflow

dnnSCR (name, nodes, dropout rate, 11 penalty,
activation, ..)

% compile (loss, optimizer, ..)

fit(x train, y train, epochs,
validation _split, callbacks, verbose)

predict (x_test)



Simulation Study M

We generated 50 independent datasets from (4) for each setting, fixing
Bs =[1,1]", g =1,2,3, and x; ~ N»(0, k), and varying:

Sample Sizes (n): 1,000 and 10,000

Frailty Variances (0): 0.5 and 2

- Censoring Rates: 0%, 25%, and 50%

Log-Risk Functions:

- Linear: hg(x;) = x" B¢
- Non-Linear: hg(x;) = log(|xi|"B¢)
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Simulation Results

Figure 4: Difference in mean integrated squared errors (MISE) of
E||hg — hg|3 & = 1,2,3 for Classical MLE - DNN-SCR
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Bivariate Brier Score M

As evaluating predictive performance under semi-competing risks has not
yet been explored, we extend the Brier Score for right-censored data to
the bivariate survival function:

2.1{Ya <t dn=1, Y1 < Ya}
Gi(Yn)
mi(t)? T{Y1 <t, Yo<t, 61 =0, =1, Yn < Ya}
Gi(Yi2)
N [1—m(e)]? - I{Ya >t Yo>t}
G,‘(I’)

BBs, = "1

. (5)

We calculate the integrated Bivariate Brier Score for 1-year survival over
a sequence of 100 evenly spaced time points in simulation
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Bivariate Brier Score Results
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Figure 5: Integrated Bivariate Brier Score for DNN-SCR versus the true

bivariate survival function

0% Censoring 25% Censoring 50% Censoring

Integrated Bivariate Brier Score

1K 10K 1K 10K 1K 10K 1K 10K 1K 10K 1K 10K
(Linear) (Linear)  (Non-Linear) (Non-Linear) (Linear) (Linear)  (Non-Linear) ~ (Non-Linear) (Linear) (Linear)  (Non-Linear) (Non-Linear)

Sample Size (Log-Risk Function)
Estimator: == DNN-SCR = Truth
13



Boston Lung Cancer Study Cohort M

Our study includes 5,296 patients with non-small cell lung cancer,
diagnosed between June 1983 and October 2021 [1]

We investigate time to disease progression and death, where progression
might be censored by death or the study endpoint

Figure 6: BLCSC Study Outcomes Table 1: Observed Outcomes in the

BLCSC Study

y Progression Censored
Death 111 (2%) 1,916 (36%)
Censored 224 (4%) 3,045 (58%)
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BLCSC Study Results
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We estimate the frailty variance to be 3.55, suggesting that progression is
highly correlated with death. iBBS for 5-year survival was 0.178

Figure 7: Hazard functions for the effect of age at diagnosis on each state
transition, stratified by sex and initial cancer stage
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Next Steps M

- Our approach fits nicely in a Bayesian paradigm, which would
facilitate formulating this as a Bayesian neural network, with
individualized risk prediction intervals

- Other specifications of the objective function, particularly a fully
non-parametric baseline hazard, may allow for even greater
prediction accuracy

- Alternatively, we can consider treating this as a classification
problem, predicting survival probabilities directly with a single,
sigmoidal output
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Conclusions M

- We have proposed a novel deep learning approach in the presence of
semi-competing risks, a currently unexplored area

- Our method can recover non-linear relationships and potentially
higher order interactions between disease progression, survival, and

high-dimensional risk factors

- Utilizing existing paradigms for machine learning in R, we implement
our method in a user-friendly workflow
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