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Motivation: Lung Cancer Prognosis

- Lung cancer remains one of the leading causes of cancer-related

deaths to date, with a 5-year survival rate of approximately 1 in 5

- Prognosis varies greatly and depends on several individualized risk

factors including smoking status, genetic variants, and other

comorbid conditions

- Patients diagnosed with lung cancer may experience a disease

progression, go into remission, or have a recurrence prior to death
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Semi-Competing Risks

- Mortality is often studied without consideration of competing

events, or composite endpoints such as progression-free survival are

constructed, which measure the time to the first of multiple events

- When progression and death do not correlate well, particularly for

cancers with long post-progression survival, the effects of certain risk

factors may differ across ‘states’ of a patient’s disease trajectory

- Many survival processes involve a non-terminal (e.g., disease

progression) and a terminal (e.g., death) event, which form a

semi-competing relationship [2]
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Disease Prognostication

- Disease prognostication is a complex task, as it often relies on the

unique risk factors and health events spanning a patient’s entire

clinical course to predict outcomes with any accuracy

- Deep learning has emerged as a powerful tool for survival prediction;

however, limited work has been done to predict multi-state or

competing risk outcomes, let alone semi-competing

- We propose a new deep learning framework for semi-competing

outcomes based on a compartment-type model [3, 6, 5]
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Semi-Competing Data and Notation

Let Ti1 denote the time to the non-terminal event, Ti2 the time to the ter-

minal event, and Ci the censoring time for the ith individual. We observe:

D = {(Yi1, δi1, Yi2, δi2, xi ); i = 1, . . . , n}

with Yi2 = Ti2∧Ci , δi2 = I (Ti2 ≤ Ci ), Yi1 = Ti1∧Yi2, δi1 = I (Ti1 ≤ Yi2),

xi is a p-vector of covariates, and I (·) denotes the indicator function

- Define Ti1 =∞ if the terminal event occurs before the non-terminal

- Let f (t1, t2); 0 ≤ t1 ≤ t2 denote the joint PDF of (T1,T2), which

assigns probability mass to the ‘upper wedge’ on which T1 < T2

- We attribute the balance of probability to the line t1 =∞ with

density f∞(t2); t2 > 0 [7, 4]
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Joint Distribution of (T1,T2)

Figure 1: Graphical representation of the joint distribution of (T1, T2) based

on the illness–death model

T1

T2 t1 = t2

T1 =∞
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The Illness-Death Model

We formulate our approach based on the illness-death model, a compartment-

type model for the rates at which individuals transition between states:

Figure 2: Illness-Death Model Framework

Event-Free Non-Terminal Event

Terminal Event

λ1(t1)

λ3(t2 | t1)

λ2(t2)

λ1 (t1 | γi , xi ) = γiλ01 (t1) exp {h1(xi )} ; t1 > 0 (1)

λ2 (t2 | γi , xi ) = γiλ02 (t2) exp {h2(xi )} ; t2 > 0 (2)

λ3 (t2 | t1, γi , xi ) = γiλ03 (t2 | t1) exp {h3(xi )} ; 0 < t1 < t2 (3)
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Method

Integrating out the frailty term, γi , in the conditional likelihood based on (1) - (3), we

derive the following objective function:

L(θ, hg (·) | D) =
N∑
i=1

δi1{log λ01 (yi1) + h1(xi )}

+ δi2 (1− δi1) {log λ02 (yi2) + h2(xi )}

+ δi1δi2{log λ03 (yi2 − yi1) + h3(xi ) + log(1 + θ)} − (θ−1 + δi1 + δi2)

× log[1 + θ{Λ01(yi1)eh1(xi ) + Λ02(yi1)eh2(xi ) + Λ03(yi2 − yi1)eh3(xi )}]

(4)

We opt for a flexible, non-parametric definition of ĥg (xi ); g = 1, 2, 3 as outputs from

three fully-connected, feed-forward sub-architectures

- We implement our approach using the TensorFlow deep learning library in R,

with model building done using the Keras API

- Finite parameter training is done via the GradientTape API for automatic

differentiation in a custom forward pass operation
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Architecture

Figure 3: Deep Neural Network for Semi-Competing Risks Architecture
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Implementation and Usage

- Taking advantage of Keras’ progressive disclosures of complexity,

we implement a custom model in a standard, user-friendly manner

- The user instantiates the DNN-SCR model with the custom model

wrapper function, then proceed with the typical workflow
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Simulation Study

We generated 50 independent datasets from (4) for each setting, fixing

βg = [1, 1]T , g = 1, 2, 3, and xi ∼ N2(0, I2), and varying:

- Sample Sizes (n): 1,000 and 10,000

- Frailty Variances (θ): 0.5 and 2

- Censoring Rates: 0%, 25%, and 50%

- Log-Risk Functions:

· Linear: hg (xi ) = xT
i βg

· Non-Linear: hg (xi ) = log(|xi |Tβg )
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Simulation Results

Figure 4: Difference in mean integrated squared errors (MISE) of

E ||ĥg − hg ||22 g = 1, 2, 3 for Classical MLE - DNN-SCR
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Bivariate Brier Score

As evaluating predictive performance under semi-competing risks has not

yet been explored, we extend the Brier Score for right-censored data to

the bivariate survival function:

BBSc =
πi (t)2 · I {Yi1 ≤ t, δi1 = 1, Yi1 ≤ Yi2}

Gi (Yi1)

+
πi (t)2 · I {Yi1 ≤ t, Yi2 ≤ t, δi1 = 0, δi2 = 1, Yi1 ≤ Yi2}

Gi (Yi2)

+
[1− πi (t)]2 · I {Yi1 > t, Yi2 > t}

Gi (t)

(5)

We calculate the integrated Bivariate Brier Score for 1-year survival over

a sequence of 100 evenly spaced time points in simulation
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Bivariate Brier Score Results

Figure 5: Integrated Bivariate Brier Score for DNN-SCR versus the true

bivariate survival function
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Boston Lung Cancer Study Cohort

Our study includes 5,296 patients with non-small cell lung cancer,

diagnosed between June 1983 and October 2021 [1]

We investigate time to disease progression and death, where progression

might be censored by death or the study endpoint

Figure 6: BLCSC Study Outcomes Table 1: Observed Outcomes in the

BLCSC Study

Progression Censored

Death 111 (2%) 1,916 (36%)

Censored 224 (4%) 3,045 (58%)
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BLCSC Study Results

We estimate the frailty variance to be 3.55, suggesting that progression is

highly correlated with death. iBBS for 5-year survival was 0.178

Figure 7: Hazard functions for the effect of age at diagnosis on each state

transition, stratified by sex and initial cancer stage
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Next Steps

- Our approach fits nicely in a Bayesian paradigm, which would

facilitate formulating this as a Bayesian neural network, with

individualized risk prediction intervals

- Other specifications of the objective function, particularly a fully

non-parametric baseline hazard, may allow for even greater

prediction accuracy

- Alternatively, we can consider treating this as a classification

problem, predicting survival probabilities directly with a single,

sigmoidal output
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Conclusions

- We have proposed a novel deep learning approach in the presence of

semi-competing risks, a currently unexplored area

- Our method can recover non-linear relationships and potentially

higher order interactions between disease progression, survival, and

high-dimensional risk factors

- Utilizing existing paradigms for machine learning in R, we implement

our method in a user-friendly workflow
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