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Motivation: Lung Cancer Prognosis IML BIOSTATISTICS

Lung cancer prognostication is a complex task, particularly when considering
the unique risk factors and health events in a given patient’s clinical course

- One of the leading causes of
cancer-related deaths to date, with
a 5-year survival rate of
approximately 7in 5

- Prognosis varies greatly and
depends on several individualized
risk factors including smoking
status, genetic variants, and other
comorbid conditions

Patients diagnosed with lung cancer may experience a disease progression, go
into remission, or have a recurrence prior to death
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Survival Analysis and Semi-Competing Risks M BIOSTATISTICS
In survival analysis, the outcome is the time until the occurrence of a specific
event, such as cancer progression or death

- What distinguishes survival outcomes is that the event of interest may not
be observed for all subjects; i.e., subjects can be censored

- Many survival processes involve a non-terminal (e.g., progression) and a
terminal (e.g., death) event, which form a semi-competing relationship [3]
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Figure: Schematic of four example patients with semi-competing risks. Diamonds indicate
non-terminal events, crosses indicate terminal events, and open circles indicate censoring.

© Stephen Salerno and Yi Li 4



The lliness-Death Model M BIOSTATISTICS

We base our approach on the illness-death model, a compartment-type model
for the hazards/transition rates between event states:
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Figure: lliness-death model framework

M (b | i, Xi) = vidor () exp {M(x;)}; t >0 (M
A2 (t2 | v, Xi) = vidoz (t2) exp {h2(xi)}; t2 >0 2
A3 (t2 | 1,7, %) = yidos (f2 | ) exp {ha(xi)}; O<t <t (3)
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Specifying the Hazard Functions M BIOSTATISTICS

Mt viXx)= v x Aor(t) xexp{hi(x)}
—_——— —— —_———

Hazard Function Frailty ~ Baseline Hazard Risk Function

Here, we parameterize the hazards for transitioning between disease states
based on three components:

1. A subject-specific random effect, or frailty
2. The baseline hazards for the state transition

3. The effect of risk factors (covariates)
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Estimating the Hazard Functions M BIOSTATISTICS

The expectation-maximization (EM) algorithm provides a numerically stable
approach for estimation, especially for large sample sizes'

- Expectation (E) Step: Patient-specific frailties
are estimated given the data and current values
for the baseline hazard functions

- Maximization (M) Step: The baseline hazards
are maximized given the current estimates for
the frailties

But how do we estimate the effect of potentially high-dimensional risk factors
with complex relationships?

1The Hessian matrix for alternatives like the Newton-Raphson algorithm is not sparse, and its size increases in n
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How to do Prediction? M BIOSTATISTICS

Deep learning has emerged as a powerful tool for survival prediction; however,
limited work has been done on multi-state outcomes, let alone semi-competing

Figure: A fully-connected, feed-forward deep neural network with an input layer (blue),
hidden layers (tan) and an output layer (maize)

Artificial neural networks try to mirror how the human brain functions, wherein
nodes (or neurons) are connected in a network as a weighted sum of inputs
through a series of affine transformations and nonlinear activations [1]
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Our Extension: Neural EM Algorithm M BIOSTATISTICS

We propose a new neural expectation-maximization algorithm which utilizes this
deep learning framework and applies it semi-competing outcomes
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Figure: Overview of our proposed neural expectation-maximization algorithm
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Boston Lung Cancer Study Cohort M BIOSTATISTICS

n=17,585

Patientsin
. R . Full Cohort
Our study includes 7,460 patients with lung cancer,

diagnosed between June 1983 and October 2021 [2]
n=123

We investigated time to disease progression and Fatients without
death, where progression might be censored by

death or the study endpoint

n=7,461

Eligible Patient with
Lung Cancer

e
)

Table: Observed Outcomes in the BLCS Cohort

n=2

Progression Censored Patiente with
Death 143 (2%) 2,720 (36%) Carcinoma /n Situ
Censored 295 (4%) 4,302 (58%)

n=7,460

Patientin
Analytic Sample

© Stephen Salerno and Yi Li 10



BLCS Study Results MM | BIOSTATISTICS

There seems to exist a nonlinear effect of age that differs by type of event
transition, cancer stage, and sex
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Figure: Log-risk functions of age at diagnosis on each state transition, stratified by sex
(solid versus dashed lines) and initial cancer stage (line color)
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Conclusions M BIOSTATISTICS

- We have proposed a novel deep learning approach in the presence of
semi-competing risks, a currently unexplored area

- Our method can recover non-linear relationships and potentially higher
order interactions between disease progression, survival, and
high-dimensional risk factors

- Utilizing existing paradigms for machine learning in R, we implement our
method in a user-friendly workflow
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Some Other Areas of Research M BIOSTATISTICS

- Composite Quality Measures for Healthcare Reporting (Star Ratings)
- Reliability Testing for Scientific Acceptability

- Impact of COVID-19 on Patients with End-Stage Renal Disease

- Understanding radiomic features from COVID-19 chest x-rays

- Causal inference in complex survey designs
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