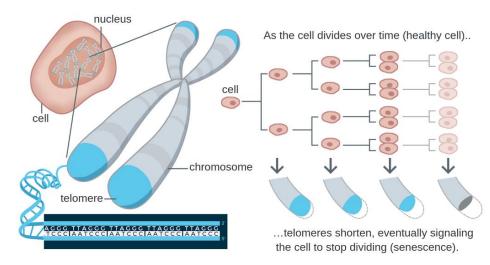


What's the Weight?

Estimating Controlled Outcome Differences in Complex Surveys for Health Disparities Research

Stephen Salerno Fred Hutchinson Cancer Center

JSM, Portland, OR August 4, 2024

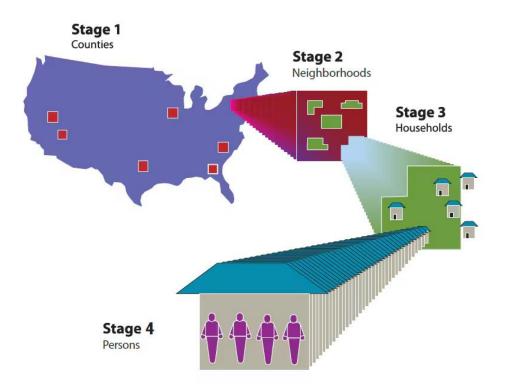


- 1 Background & Motivation
- 2 Proposed Method
- 3 Simulations
- 4 Race & Telomere Length
- 5 Conclusions

Our Motivation

Telomere Length and its Relationship with Race and SES

- Regions of DNA at the ends of chromosomes that protect against cell death
- Shortening associated w/ cardiometabolic outcomes
- Affected by age, sex, race/ethnicity, genetics,
 SES, environment, psychosocial stress, ...
- Longer telomeres in Black individuals (paradox)
 BUT
- Comparable length in populations w/ similar SES


Credit: theory.labster.com/telomere-length

"If we could hypothetically *balance* SES between Black and White individuals in a *nationally representative sample*, would we still see significant Black/White *differences* in telomere length?"

Our Data

National Health and Nutrition Examination Survey

- Nationally representative survey by the CDC
- *Rich data* from interviews, physical examinations, laboratory tests, ...
- Stratified, clustered *complex design*:
 - Primary sampling units (counties)
 - Drawn from demographic-specific strata
 - Oversamples non-Hispanic Black
 participants and ≤ 130% poverty limit

Our Problem

Confounding + Selection Bias + Design

- Observational data often limited by confounding, covariate imbalance, lack of representation
- Generalizing results while accounting for confounding difficult due to complex survey designs
- This question is **statistically** challenging because:
 - Characteristic of interest (race) is correlated with SES
 - Both factors influence the probability of being sampled

Our Approach

Notation and Target of Inference

Survey of *n* participants from a **super population** of *N* individuals:

- A: **Groups** of Interest (race; 1 = Black, 0 = White)
- X: Confounders (SES)
- Y: **Outcome** (log telomere length)
- S: Sample **Selection Indicator**

Want to estimate the *population average controlled difference (ACD)*:

$$ACD = E_X[E(Y | A = 1, X) - E(Y | A = 0, X)]$$

Our Approach

Identification Formulas

- **Questions**: Do you survey weight the propensity model? How to weight the outcome?
- **Answer:** Depends on factorization of **selection** (S = 1) and **group membership** (A = a) probability:

(1)
$$\mathbb{E}_{X}\left[\mathbb{E}[Y\mid A=a,S=1,X]\cdot\frac{\Pr(S=1)}{\Pr(S=1\mid X)}\mid S=1\right]$$
 Estimate via **g-formula** (1) or **inverse probability weighting** (2, 3)
$$\mathbb{E}_{X}\left[\frac{AY}{\Pr(A=a\mid X)}\cdot\frac{\Pr(S=1)}{\Pr(S=1\mid A=a,X)}\mid S=1\right]$$
 Either we **weight** our **propensity score** specifically take **selection given A = a**

(2)
$$\mathbb{E}_X \left[\frac{AY}{\Pr(A = a \mid X)} \cdot \frac{\Pr(S = 1)}{\Pr(S = 1 \mid A = a, X)} \middle| S = 1 \right]$$

(3)
$$\mathbb{E}_{X} \left[\frac{AY}{\Pr(A=a \mid S=1,X)} \cdot \frac{\Pr(S=1)}{\Pr(S=1 \mid X)} \mid S=1 \right]$$

Either we weight our propensity score and specifically take **selection given A = a**

Or we fit a *within-sample* propensity score and marginalize A out of the selection probability

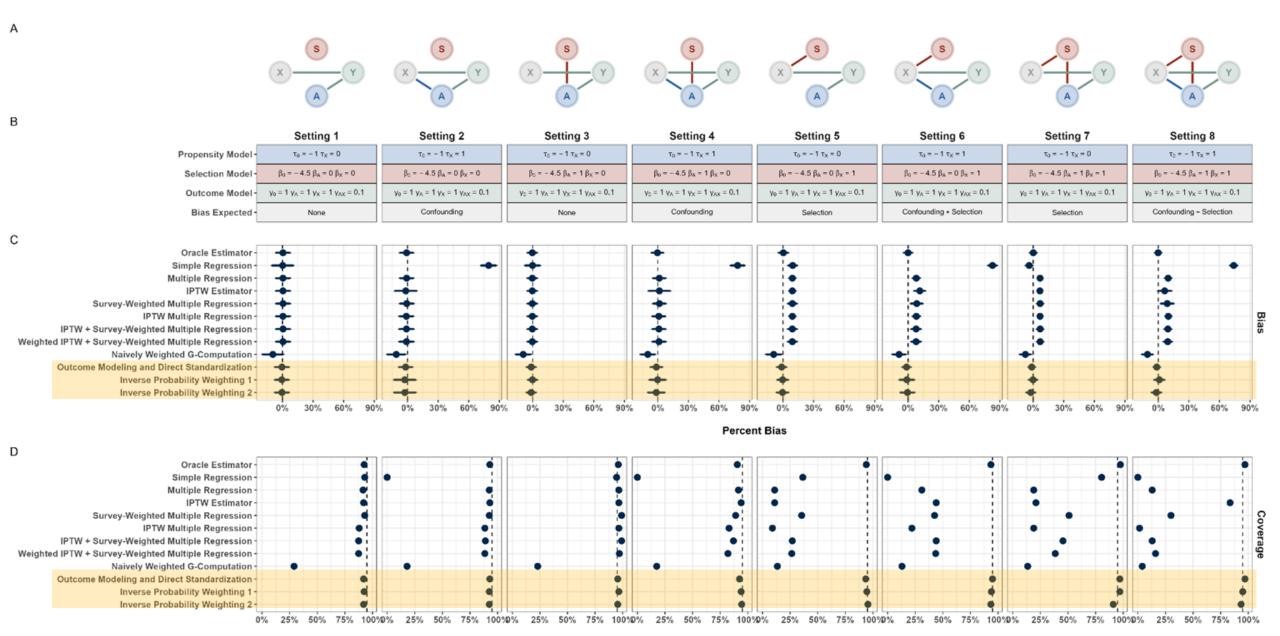
Assumptions

ACD versus PATE

To estimate the ACD, we assume:

- 1. Positivity: $Pr(A = a \mid X = x) > 0 \ \forall a \in A \ and \ every \ x \ s.t. \ f_X(x) > 0$
- 2. Selection Positivity: $Pr(S = 1 \mid A = a, X = x) > 0$ for every a, x s.t. $f_{A,X}(a, x) > 0$
- 3. Weak Selection Exchangeability: $E[Y \mid A = a, X] = E[Y \mid A = a, S = 1, X]$.

Note: Can target **population potential outcome means,** E[Ya], with **stronger assumptions**:


- 3. Weak Selection Exchangeability: $E[Y^a \mid A = a, X] = E[Y^a \mid A = a, S = 1, X]$
- 4. Stable Unit Treatment Value Assumption (SUTVA; No Interference + Consistency)
- 5. Weak Exchangeability: $E[Y^a \mid X] = E[Y^a \mid A = a, X]$

Comparison of Methods

When to Use Each Approach

- Existing methods that do not account for confounding and selection will be biased
- Weights are not the same as traditional g-computation or IPTW, we derive new estimators
 - (1) and (3) require selection be *marginalized* over A and a *within-sample* propensity score
 - (2) requires *group-specific selection probabilities* and *survey-weighted* propensity score
- G-computation is most efficient if correctly specified, but IPWs more robust
- In practice, even if sampling weights are given, may not know the *true sampling mechanism*
 - Can model the survey weights via beta or simplex regression

Simulation Results

Coverage

Simulation Results

Our methods perform better in more complex settings

Settings 1 + 3: No Bias

Facilitates a fair comparison – All perform comparably w.r.t. bias, MSE, coverage

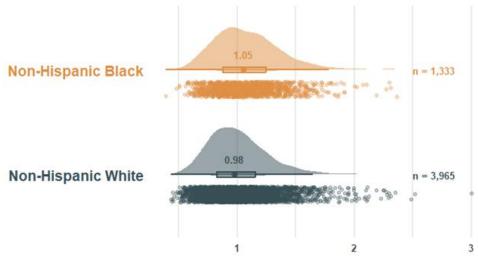
Settings 2 + 4 Confounding Bias

Simple linear regression performs poorly, all other methods that adjust for A and X perform well

• Settings 5 + 7: Selection Bias

Approaches that do not survey weight have bias, poor coverage, other methods perform well

Settings 6 + 8: Confounding + Selection Bias


Assumed relationships in our data – our proposed estimators outperform all current approaches

Our Data

National Health and Nutrition Examination Survey (NHANES)

- 5,298 non-Hispanic Black/White adults from 1999 to 2002 with measured telomere length
 - 12 socio-demographic indicators:

Education, Marital Status, Household Size, Home Ownership, Home Type, Household Income, Poverty-Income Ratio, Employment Status, Occupational Category, Insurance Status, Food Security Status, WIC Utilization

8 precision covariates:

Age, Sex, White Blood Cell Count, 5-Part Differential

Telomere Length, Mean T/S Ratio

Descriptive Statistics

Univariate tests suggest Black/White differences across all socioeconomic indicators

Characteristic	Overall, $N = 5,298^{I}$	Non-Hispanic White, N = 3,965 ¹	Non-Hispanic Black, N = 1,333 ¹	p-value
Telomere Length, Mean T/S Ratio	1.00 (0.84, 1.18)	0.98 (0.83, 1.16)	1.05 (0.88, 1.25)	< 0.001
Age, Years	50 (35, 67)	52 (35, 70)	45 (34, 62)	< 0.001
Sex				0.4
Male	2,574 (49%)	1,939 (49%)	635 (48%)	
Female	2,724 (51%)	2,026 (51%)	698 (52%)	
Education	CONTRACTOR			
High School or GED	2,621 (49%)	1,790 (45%)	831 (62%)	
Some College	1,448 (27%)	1,102 (28%)	346 (26%)	
College Graduate	1,222 (23%)	1,068 (27%)	154 (12%)	
Refused/Unknown	7 (0.1%)	5 (0.1%)	2 (0.2%)	
Marital Status				< 0.001
Never Married	754 (14%)	436 (11%)	318 (24%)	
Widowed/Divorced/Separated	1,157 (22%)	775 (20%)	382 (29%)	
Married/Living with Partner	3,144 (59%)	2,574 (65%)	570 (43%)	
Refused/Unknown	243 (4.6%)	180 (4.5%)	63 (4.7%)	
Household Size		0 ő	170 17	< 0.001
• • •				

Fred Hutchinson Cancer Center

Our Study

Results

ACD estimates and corresponding 95% confidence intervals across various analytic approaches for the comparison of effect of race (non-Hispanic Black versus non-Hispanic White participants) on log-transformed telomere length among n = 5,270 NHANES participants (complete case -28 participants)

Method	ACD Estimate	95% Confidence Interval
Multiple Regression	0.0265	0.0106, 0.0423
IPTW Estimator	0.0263	0.0080, 0.0446
Survey-Weighted Multiple Regression	0.0298	-0.0012, 0.0607
IPTW Multiple Regression	0.0181	0.0052, 0.0311
IPTW + Survey-Weighted Multiple Regression	0.0219	-0.0090, 0.0527
Weighted IPTW + Survey-Weighted Multiple Regression	0.0186	-0.0127, 0.0499
Outcome Modeling and Direct Standardization	0.0176	-0.0030, 0.0381
Inverse Probability Weighting 1	0.0150	-0.0151, 0.0451
Inverse Probability Weighting 2	0.0132	-0.0081, 0.0345

Fred Hutchinson Cancer Center

Data Analysis Conclusions

From Comparison of Approaches

- ACD estimates *attenuate* as we make *appropriate adjustments* for confounding + selection bias:
 - *Linear Regression*: ACD estimate of 0.0265 (95% CI: 0.0106-0.0423)
 - **Proposed Approaches**: 0.0132 to 0.0176, failed to detect a statistically significant difference
- These results suggest there is a confounding relationship between SES and race
- Methods which properly incorporated the NHANES stratified, clustered design tended to have more conservative standard error estimates than those which did not

Conclusions

Some thoughts on the approach and our results

- Approach for estimating controlled outcome differences when the group variable of interest and its confounders affect sample selection
- Proposal minimizes bias and achieves correct inference compared to standard analysis methods
- Context of studying racial disparities presents these particularities in such a way that should be rigorously studied for best practice recommendations

Conclusions

Thoughts on Future Work

- Though we focus on complex survey designs, these concepts readily extend to other settings
 where observational data are collected via an underlying selection mechanism
- Areas of interest for *future work* include:
 - *Electronic health record* data with unknown sampling probabilities
 - Expanded relationship diagrams or sampling designs
- Extending this framework to two-stage sampling or sequential designs
- Expand on method with doubly robust, AIPW estimator

Our Group

Stephen Salerno
Fred Hutchinson Cancer Center
Division of Public Health Sciences

Tyler McCormick
University of Washington
Department of Statistics
Department of Sociology

Emily Roberts
University of Iowa
Department of Biostatistics

Bhramar Mukherjee

Yale University

Department of Biostatistics

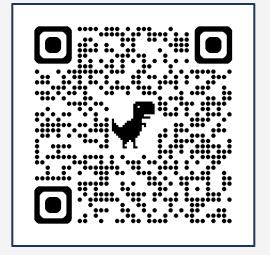
Department of Epidemiology

Department of Statistics and Data Science

Belinda Needham
University of Michigan
Department of Epidemiology

Xu Shi
University of Michigan
Department of Biostatistics

Thank You!



Paper

R Package

Land Acknowledgement

Fred Hutchinson Cancer Center acknowledges the Coast Salish peoples of this land, the land which touches the shared waters of all tribes and bands within the Duwamish, Puyallup, Suquamish, Tulalip and Muckleshoot nations.

Estimation

Outcome Modeling and Direct Standardization

- Define the **functional** $\mu(a)$ for ID1 and let $\hat{g}_a(X)$ be an estimator for $E[Y \mid A = a, S = 1, X]$
 - Can be estimated with standard *parametric* model, $g_a(X; \gamma)$ with finite-dimensional parameter γ
- Our *outcome model-based estimator* for μ(a) is given by

$$\hat{\mu}_{\text{ID1}}(a) = \frac{1}{n} \sum_{i=1}^{n} \hat{g}_a(X_i) \frac{\hat{\pi}^0}{\hat{\pi}(X_i)}$$

where π 's are estimators of the *sample selection probabilities*

• If $g_a(X; \gamma)$ is correctly specified, then $\hat{g}_a(X; \gamma) \to_p E[Y \mid A = a, S = 1, X]$, and $\hat{\mu}_{ID1}(a) \to_p \mu(a)$ for $a \in A$

Estimation

Inverse Probability Weighting

- ID2A and ID2B rely on *inverse probability weighting* to control for confounding, where $\hat{e}_a(X)$ is the within-sample and $\hat{e}_a^w(X)$ is the survey-weighted *propensity model* estimator
- We can write out the IP-weighting estimator as either

$$\hat{\mu}_{\text{ID2A}}(a) = \frac{1}{n} \sum_{i=1}^{n} \frac{I(\mathcal{A} = a)\hat{\pi}^{0}Y}{\hat{e}_{a}^{w}(X_{i})\hat{\pi}(A_{i}, X_{i})}$$
 or

$$\hat{\mu}_{\text{ID2B}}(a) = \frac{1}{n} \sum_{i=1}^{n} \frac{I(\mathcal{A} = a)\hat{\pi}^{0}Y}{\hat{e}_{a}(X_{i})\hat{\pi}(X_{i})}.$$

Which are also consistent if the propensity and selection models are correctly specified

Causal Inference Target

Population Average Treatment Effect

• Can also target *potential outcome means*, i.e., *E[Y^a]* for a ∈ A and the *population average treatment effect* (*PATE*), defined as the expected difference in counterfactual outcomes:

$$PATE = E[Y^1 - Y^0]$$

- In general, $E[Y^1-Y^0] \neq E[Y^1-Y^0 \mid S=1]$; sample may not be representative of the larger population
- Goal: Derive an identification formula for E[Ya], the potential outcome means
- Same as our main result for the ACD, but under stronger assumptions

Our Approach

Inference

- Inference can be carried out analytically via Taylor expansion, accounting for all variation, or via numerical estimation via the general theory from M-estimation
- Let $\theta(P)$ denote the **parameter vector** arising from the series of **estimating equations** and let ϕ_i denote the corresponding **influence function** for the ith individual
- Using numerical optimization, the covariance matrix of the estimated parameters is given by

$$\hat{V}(\hat{\theta}) = \sum_{i=1}^{n} \phi_i(y, \hat{\theta}, \mathcal{P}) \phi_i(y, \hat{\theta}, \mathcal{P})'$$

A Note on Inference

Modified Sandwich Variance Estimator

- While **bias** incurred from differential sampling probabilities is **accounted for** in estimation, inference is affected by **correlation** between individuals within strata and primary sampling units (PSUs)
- Modify **sandwich variance estimator** by summing contributions of the ith individual (i = 1, ..., nj), in the jth PSU (j = 1, ..., Jk), in the kth sampling stratum (k = 1, ..., K)
- Estimated **covariance matrix** for our **parameters** expressed in terms of the variability of the between PSU-level sums of the first order **Taylor approximations** within the sampling strata

$$\sum_{k=1}^{K} \frac{J_k}{J_{k-1}} \sum_{j=1}^{J_k} \left\{ \phi_{\cdot jk} \left(y, \hat{\theta}, \mathcal{P} \right) - \bar{\phi}_{\cdot \cdot k} \left(y, \hat{\theta}, \mathcal{P} \right) \right\} \left\{ \phi_{\cdot jk} \left(y, \hat{\theta}, \mathcal{P} \right) - \bar{\phi}_{\cdot \cdot k} \left(y, \hat{\theta}, \mathcal{P} \right) \right\}'$$

Fred Hutchinson Cancer Center

Comparison of Methods

Existing Strategies for Analysis versus Our Approaches

Annuach		Model			Weight				
	Approach	Outcome	Propensity	Selection	Balancing	Generalizability			
Existing Approaches									
1	Simple Regression	$\mathbb{E}[Y A,S=1]$	-	-		-			
2	Multiple Regression	$\mathbb{E}[Y A,X,S=1]$	-	-	-	-			
3	IPTW Estimator	AY	$\Pr(A=1 X,S=1)$	-	$Pr(A = 1 X, S = 1)^{-1}$	-			
4	Survey-Weighted Multiple Regression	$\mathbb{E}[Y A,X]$	-	$\Pr(S=1 A,X)$		$\Pr(S=1 A,X)^{-1}$			
5	IPTW Multiple Regression	$\mathbb{E}[Y A,X,S=1]$	$\Pr(A=1 X,S=1)$	-	$Pr(A = 1 X, S = 1)^{-1}$	-			
6	IPTW + Survey-Weighted Multiple Regression	$\mathbb{E}[Y A,X]$	$\Pr(A=1 X,S=1)$	$\Pr(S=1 A,X)$	$Pr(A = 1 X, S = 1)^{-1}$	$\Pr(S=1 A,X)^{-1}$			
7	Weighted IPTW + Survey-Weighted Multiple Regression	$\mathbb{E}[Y A,X]$	$\Pr(A=1 X)$	$\Pr(S=1 A,X)$	$\Pr(A=1 X)^{-1}$	$\Pr(S=1 A,X)^{-1}$			
8	Naïve G-Computation	$\mathbb{E}[Y A,X,S=1]$	-	$\Pr(S=1 A,X)$		$\Pr(S=1 A,X)^{-1}$			
Proposed Approaches									
9	Identification Formula 1	$\mathbb{E}[Y A,X,S=1]$	-	$\Pr(S=1 X)$	-	$\Pr(S=1 X)^{-1}$			
10	Identification Formula 2a	AY	Pr(A = 1 X)	$\Pr(S=1 A,X)$	$\Pr(A=1 X)^{-1}$	$\Pr(S=1 A,X)^{-1}$			
11	Identification Formula 2b	AY	$\Pr(A=1 X,S=1)$	Pr(S = 1 X)	$Pr(A = 1 X, S = 1)^{-1}$	$\Pr(S=1 X)^{-1}$			

Simulations

Setup

- Covariate: *X* ~ *N*(1,1)
- Group Variable: $A \mid X \sim Bin(N, p_A)$ where $p_A = logit^{-1}(\tau_0 + \tau_X X)$
- Sampling Indicator: $S \mid A, X \sim Bin(N, p_S)$ where $p_S = logit^{-1}(\beta_0 + \beta_A A + \beta_X X + \varepsilon_S)$ and $\varepsilon_S \sim N(0, 0.1)$
- We consider a **heterogeneous effect** with $\varepsilon_O \sim N(0, 1)$:

$$Y = \gamma_0 + \gamma_A A + \gamma_X X + \gamma_{AX} AX + \varepsilon_0$$

• Then take *nsims* = 200 random samples based on our sampling indicator, S